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Abstract: A stereoselective synthesis of a fully protected C,-C,,-polyol-fragment of nystatin
A, is described. The oxy-Cope rearrangement of the chiral aldol product 1 affords the
aldehyde 3 as the key intermediate which is converted into the natural product fragment by

enantioselective allylboration and intramolecular conjugate addition of a hemiacetal-alkoxide.
© 1997 Elsevier Science Ltd. All rights reserved.

Nystatin A, is a member of the large group of over 200 polyene macrolide antibiotics which have been
discovered so far.' Based upon their strong antifungal activity some of them like nystatin A; have become
important clinical agents for the treatment of life-threatening fungal infections. The molecular structure of
nystatin A, is devided into a polyene section of six double bonds and a polyol part of eight hydroxy groups
which are positioned mainly in a 1,3-relationship. Such 1,3-diol motifs are also found in many other members
of this class of natural products, thus the search for new stereoselective routes towards the synthesis of 1,3,5,..-
polyol structures has been an area of active research for the past several years.”

We wish to present here a novel and stereoselective approach towards the C;-C,¢-polyol fragment of
nystatin A,3 which is based on the Cope rearrangement of chiral aldol products.4 This methodology was
recently developed in our laboratory and has been successfully applied for the synthesis of enantiopure and
highly substituted tetrahydropyrams5 and piperidines.6

The chiral aldehyde 3 readily available via Cope rearrangement of aldol product 1 was envisaged as the
key intermediate in our synthesis. It already contains three hydroxy groups of the C,-C,,-fragment of nystatin
A, in a masked form: the aldehyde to be converted into the C,-hydroxy group by enantioselective
allylboration, the phenyldimethylsilyl group to be traded for the Cs-hydroxy group by oxidative desilylation
and the enoatc moiety to be used for the introduction of the C,-hydroxy group by conjugate addition of an oxa-
nucleophile., The reason for the use of a 1-silyl-1,5-diene in this context is the poor performance of 1-alkoxy-
1,5-dienes in the Cope rearrangement.7
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The aldoi product 1a was prepared in good yield according to the Evans asymmetric aldol
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methodology.” The standard silyloxy-Cope rearrangement of ib (R= SiMe;) was complete within 20-30 min
in toluene at 180°C (10:1 stereoselection). Apparently, the free activation energy of the sigmatropic
rearrangement is significantly lower for the silyl-substituted 1,5-dienes compared to the alkyl-substituted
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ones. Therefore, we reasoned that a Cope reanangement of the unprorecrea aldol proauct ia uv H ) mlgm be
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install the protected C;-hydroxy group syn-stereoselectively (25:1 stereoselection).'* This conjugate addition is
known to be thermodynamically controlied to deliver the dioxane 6'° with ali substituents in equatorial
positions.
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Reagents and conditions: a) allylbis(2-isocaranyl)borane, Et70, -78°C, 30 min, then HyO», MeOH, 1, 30
min; b) C13CC=NHOBn, TfOH, CH;Cl,, 0°C, 4 h; ¢) BF3(AcOH),, CH2Cly, 1t, 5 min; d) HyO), NaHCO3,
KF, MeOH, THF, rt, 5 h; c) K_OtBL, PhCHO, CH)Cl,, 0°C, 1 h; f) BHa-THF, THF, 0°C, 1 h, then H,0,

Finally, hydroboration of the terminal olefin and acetylation produced a fully protected, enantiopure C;-
Ci¢-polyol fragment of nystatin A, 7. Upon hydrogenolysis and treatment with acid the benzyl protecting
16

groups were removed and lactonization occurred to afford the known lactone 8 whose spectroscopic and
analytical properties were identical with the published data. }

In conclusion, we have achieved a very short and stereoselective synthesis of the C,-C,,-polyol-fragment
of nystatin A, with a highly selective and efficient oxy-Cope rearrangement of a chiral aldol product as the key
step. The strategy presented here is expected to be applicable to the synthesis of even more complex polyol
natural products which we are now actively pursuing.
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